$$\varkappa(t) = 5\cos(2\pi(3)t + 50^{\circ}) \implies f = 3$$

$$\varkappa(t) = 5\cos(at + b) \implies f = \frac{a}{2\pi}$$

5.2 Instantaneous Frequency

Definition 5.9. The *generalized sinusoidal* signal is a signal of the form

$$x(t) = A\cos(\theta(t))$$
 (73)

Euler's

where $\theta(t)$ is called the **generalized angle**.

- The generalized angle for conventional sinusoid is $\theta(t) = 2\pi f_c t + \phi$.
- In [3, p 208], $\theta(t)$ of the form $2\pi f_c t + \phi(t)$ is called the **total instan**taneous angle.

Definition 5.10. If $\theta(t)$ in (73) contains the message information m(t), we have a process that may be termed **angle modulation**. cos(x) = Re { [x] x}

- The amplitude of an angle-modulated wave is constant.
- Another name for this process is exponential modulation.
 - The motivation for this name is clear when we write x(t) as $A \operatorname{Re} \{e^{j\theta(t)}\}$
 - \circ It also emphasizes the nonlinear relationship between x(t) and m(t).
- Since exponential modulation is a nonlinear process, the modulated wave x(t) does not resemble the message waveform m(t).

5.11. Suppose we want the frequency f_c of a carrier $A\cos(2\pi f_c t)$ to vary with time as in (72). It is tempting to consider the signal

 $A\cos(2\pi g(t)t), \quad f(t) = \frac{1}{2\pi} \frac{d}{dt} \theta(t)$ It is tempting to (74)think alto plays the $=\frac{d}{dt}((g(t))(t)) = g(t) + t\frac{d}{dt}g(t)$ where g(t) is the desired frequency at time t.

Example 5.12. Consider the generalized sinusoid signal of the form 74 above with $q(t) = t^2$. We want to find its frequency at t = 2. here. A cos(27(t2)t) = A cos (27t3)

(a) Suppose we guess that its frequency at time t should be g(t). Then, at time t=2, its frequency should be $t^2=4$. However, when compared with $\cos(2\pi(4)t)$ in Figure 38a, around t=2, the "frequency" of $\cos(2\pi(t^2)t)$ is quite different from the 4-Hz cosine approximation. Therefore, 4 Hz is too low to be the frequency of $\cos(2\pi (t^2) t)$ around t=2.

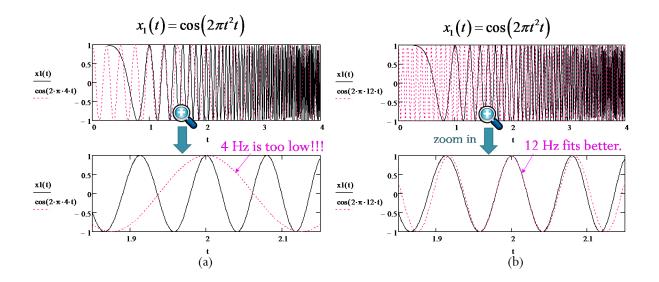


Figure 38: Approximating the frequency of $\cos(2\pi(t^2)t)$ by (a) $\cos(2\pi(4)t)$ and (b) $\cos(2\pi(12)t)$.

(b) Alternatively, around t=2, Figure 38b shows that $\cos(2\pi(12)t)$ seems to provide a good approximation. So, 12 Hz would be a better answer.

Definition 5.13. For generalized sinusoid $A\cos(\theta(t))$, the **instantaneous frequency**²³ at time t is given by A cos(mt+c)

$$f(t) = \frac{1}{2\pi} \frac{d}{dt} \theta(t).$$

Example 5.14. For the signal $\cos(2\pi(t^2)t)$ in Example 5.12,

$$\theta\left(t\right) = 2\pi\left(t^2\right)t$$

and the instantaneous frequency is

aneous frequency is
$$f(t) = \frac{1}{2\pi} \frac{d}{dt} \theta(t) = \frac{1}{2\pi} \frac{d}{dt} \left(2\pi \left(t^2 \right) t \right) = 3t^2.$$

$$(2) = 3 \times 2^2 = 12.$$

In particular, $f(2) = 3 \times 2^2 = 12$.

5.15. The instantaneous frequency formula (75) implies

F(t)
$$=\frac{2\pi \int}{\frac{d}{dt}} \theta(t)$$
 $\theta(t) = 2\pi \int_{-\infty}^{t} f(\tau)d\tau = \theta(t_0) + 2\pi \int_{t_0}^{t} f(\tau)d\tau.$ (76) $=\frac{d}{dt} \theta(t)$

Although f(t) is measured in hertz, it should not be equated with spectral frequency. Spectral frequence f is the independent variable of the frequency domain, whereas instantaneous frequency f(t) is a timedependent property of waveforms with exponential modulation.